Intelligent Computation and Dsp-based Landing Control

نویسندگان

  • Jih-Gau Juang
  • Hou-Kai Chiou
  • Chia-Ling Lee
چکیده

This paper presents several digital signal processor (DSP) based intelligent controllers for aircraft automatic landing systems (ALSs). Proportional-Integral-Derivative (PID) control law is adopted in the intelligent controller design. A fuzzy cerebellar model articulation controller (CMAC) is utilized to compensate for the PID control signal. Control gains are selected by evolutionary computation. The controllers’ tracking performance of preset landing paths and capability to adaptively respond to different disturbances are demonstrated through hardware simulations. Different evolution methods, namely Adewuya crossover, arithmetical crossover, average crossover, convex crossover and blend crossover are utilized to analyze the controllers’ performances in terms of optimal parameter search. Hardware implementation of this intelligent controller is performed by a DSP board with a VisSim platform. This study also compares different CMACs in order to improve the performance of conventional ALSs. It is known that atmospheric disturbances affect not only the flight qualities of an aircraft, but also the flight safety. However, the proposed intelligent controllers can successfully expand the controllable conditions, even with severe wind disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardware Implementation of Aircraft Landing Controller by Evolutionary Computation and DSP

This paper presents a hybrid control scheme for the aircraft automatic landing system. PID control law is adopted in the controller design. Disturbance adaptive capability is demonstrated through hardware in the loop simulations. The control scheme uses PID controller with evolutionary computation technique. Control gains are selected by real-valued genetic algorithms. Different crossover metho...

متن کامل

Oscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)

This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...

متن کامل

Optimized Fuzzy Logic for Nonlinear Vibration Control of Aircraft Semi-active Shock Absorber with Input Constraint (TECHNICAL NOTE)

Landing impact and runway unevenness have proximate consequence on performance of landing gear system and conduce to discomfort of passengers and reduction of the pilot’s capability to control aircraft. Finally, vibrations caused by them result in structure fatigue. Fuzzy logic controller is used frequently in different applications because of simplicity in design and implementation. In the pre...

متن کامل

Aircraft Landing Control Based on CMAC and GA Techniques

This paper presents an intelligent control scheme that uses a cerebellar model articulation controller (CMAC) and genetic algorithms (GA) in aircraft automatic landing control and to make automatic landing systems (ALS) more intelligent. The proposed intelligent controller can act as an experienced pilot and guide the aircraft to a safe landing in severe turbulence environment. Current flight c...

متن کامل

Optimal intelligent control for glucose regulation

This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017